
在沥青和树脂的基础上,经过改性得到的物质。如果结合剂炭化后能形成镶嵌结构和原位形成碳纤维物质,那么这种结合剂将改善耐火材料的高温性能。为了提高MgO-C砖的抗氧化性,常加入少量的添加剂,添加剂的作用原理大致可分为两个方面:一方面是从热力学观点出发,即在工作温度下,添加物或者添加物和碳反应生成其他物质,它们与氧的亲和力比碳与氧的亲和力大,优先于碳被氧化从而起到保护碳的作用;另一方面,即从动力学的角度来考虑添加剂与O2,CO或者碳反应生成的化合物改变碳复合耐火材料的显微结构,如增加致密度,堵塞气孔,阻碍氧及反应产物的扩散等。

蓝晶石粉可以在低于1350℃下发生转化反应产生较小体积膨胀,析出的SiO2又可与材料中的α-Al2O3反应生成莫来石,这样也有助于结合。如果在液相范围内产生膨胀,那么膨胀会引起液体的移动,浇注料的许多空隙可能被液体填充。所以莫来石的生成不仅能够提高浇注料的结构强度,改善烧后线变化,而且还能部分消除浇注料在高温和冷却过程中产生的收缩裂缝,从而提高浇注料的使用寿命,所以,在细粉中应添加适量的蓝晶石粉。但其加入量过大时,导致浇注料剥落,故其加入量以10%左右为宜。

近期中国耐火材料行业协会对52家耐材生产企业进行的调研显示,2012年耐材企业销售收入同比降低4.29%,实现利润同比降低21.40%;2012年以来,应收货款同比上升15.34%。为此,工信部昨日发布《关于促进耐火材料产业健康可持续发展的若干意见》,档渣墙销售意见指出到2015年,高端耐火材料基本自给,菱镁矿石资源综合利用率不低于90%,耐火粘土矿石资源综合利用率不低于80%。到2020年,唐山中间包档渣墙两种矿石资源综合利用率分别高于95%和90%。并推进联合重组、优化产业布局、强化节能降耗、淘汰落后产能。

当进行较大体积或厚度的多层耐火浇注料施工时,层料振捣完毕,应将泛浆层划破再加第二层料。因泛浆层表面较光,易造成厚度分层现象硬化是指耐火材料与结合剂之间发生物理化学变化后所形成的结构,在一定的外界环境条件下所具有的机械强度。多种不定形耐火材料,在胶结剂的作用下,不需经过高温烧结,只要满足它的特定要求,即可实现化学或物理结合而达到耐火材料的硬化并具有较高的强度。如各种类型的耐火水泥,当与耐火骨料、粉料及水混合后,经过一段时间养护、不断硬化,强度不断提高。高温烧成耐火材料,或是热喷补的耐火材料,在温度下降的过程中,原有液相玻璃化或是晶体活性降低而实现了硬化过程。

共同烧结镁铬砖的直接结合和显微结构的均一性较直接结合砖更好,方镁石脱溶相和晶间二次尖晶石量更多,共同烧结镁铬砖具有一系列较直接结合砖更好的性能,尤以高温强度、耐温度急变性和抗渣性著称。共同烧结砖还可以分为两个品种,一是全共同烧结砖,颗粒和细粉全系共同烧结料,无论是烧成或化学结合的其显微结构基本上是相似的;二是部分共同烧结砖,配料中有一部分,比如粗颗粒用共同烧结料,而细粉部分可用细铬矿和镁砂纸粉按一定比例混合配入砖中,这样烧成的和化学结合的制品便在显微结构上有所差异。

泥料的制备。配种时颗粒临界尺寸的选择是重要的。骨料颗粒细化,可减少开口气孔率,增强抗氧化能力。但是骨料颗粒小,会使闭口气孔增加,体积密度降低。另外,细粒MgO骨料容易和石墨反应,通常认为颗粒粒径1mm为宜。在有高压成型设备的条件下,镁砂的颗粒趋向于微细化。我国成型设备的压力较低,为了提高耐火砖密度,许多厂家采用5mm以上的颗粒直径。配料中加入石墨的质量和数量至关重要。一般来说,增加耐火砖中石墨含量,耐火砖的抗渣性和热震稳定性会提高,但强度和抗氧化性均会降低,若镁碳砖中碳含量太少(<10%),耐火砖中不能形成网络骨架,则碳的优势不能有效地发挥。所以,碳含量在10—20%范围内较为合适。